Infinitesimal Hartman-Grobman Theorem in Dimension Three.

نویسنده

  • Clementa Alonso-González
چکیده

In this paper we give the main ideas to show that a real analytic vector field in R3 with a singular point at the origin is locally topologically equivalent to its principal part defined through Newton polyhedra under non-degeneracy conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional dynamical systems: A fresh view on the local qualitative theorems

The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...

متن کامل

The Hartman-Grobman Theorem

The Hartman–Grobman Theorem (see [3, page 353]) was proved by Philip Hartman in 1960 [5]. It had been announced byGrobman in 1959 [1], likely unbeknownst to Hartman, and Grobmanpublished his proof in 1962 [2], likely without knowing of Hartman’s work. (Grobman attributes the question to Nemycki and an earlier partial result to R.M. Minc (citing Nauč. Dokl. Vysš. Školy. Fiz.-Mat. Nauki 1 (1958))...

متن کامل

An Undergraduate’s Guide to the Hartman-Grobman and Poincaré-Bendixon Theorems

The Hartman-Grobman and Poincaré-Bendixon Theorems are two of the most powerful tools used in dynamical systems. The Hartman-Grobman theorem allows us to represent the local phase portrait about certain types of equilibria in a nonlinear system by a similar, simpler linear system that we can find by computing the system’s Jacobian matrix at the equilibrium point. The Poincaré-Bendixon theorem g...

متن کامل

Lyapunov function proof of Poincaré's theorem

One of the most fundamental results in analysing the stability properties of periodic orbits and limit cycles of dynamical systems is Poincaré’s theorem. The proof of this result involves system analytic arguments along with the Hartman–Grobman theorem. Using the notions of stability of sets, lower semicontinuous Lyapunov functions are constructed to provide a Lyapunov function proof of Poincar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anais da Academia Brasileira de Ciencias

دوره 87 3  شماره 

صفحات  -

تاریخ انتشار 2015